HOW TO USE AUTODIFF

SEHYOUN AHN

1. INITIAL SETUP

If you are reading this document, I believe you already want to implement automatic differentiation instead of
other methods of numerical differentiation, so I will jump right into how to use it.

1.1. Compiling mex Files. This program uses C codes to improve on the (intermediate) memory usage and
speed (the biggest difference will be from matrix-vector and matrix-matrix multiplication). Hence, if the size of
the problem is small or the speed does not matter too much, the program can be used without compiling C files.
MATLAB/mex compatibile C compiler is necessary for this step. The list of compatible compilers can be found
at https://www.mathworks.com/support/compilers.html Once, a supported compiler has been installed; run
<compile_mex_files.m> in MATLAB. This will compile the C codes.

1.2. Adding Class Folder at Startup. MATLAB defines class structure with foldersﬂ Hence, the @myAD needs
to be in its search path for the automatic differentiation to work. Omne way to do this is by just adding the
parent folder location of the @myAD folder at the beginning of each session. For example, if the @myAD folder is in
<\home\username\scripts\>, then

addpath(’ \home\username\scripts\’);
will add the correct parent folder to the search path.

However, this requires the addition of the path in every session, and this can be fixed permanently by adding
the path permanently to the path file by calling

savepath

and you would not have to add the path again with each new sessionﬂ

2. A QUICK TUTORIAL

Suppose you want to find the derivative of f(Z) at some point Zy, Dzf| z#,- Then, you would first initialize the

values of @’s at the point Zy by calling
x=myAD(x_0) ;

which will create a dual number variable x with values of xg. Then, you can call f using the standard syntax:

y=f (x);

Then, y will contain both the functional value f(Z), and the derivative Dzf|; . You can access them by calling
getvalues(y);
getderivs(y);

This is it! Numerically computing the derivative does not require any coding beyond initializing the variables as a
dual number (with the initial call of myAD).

Date: January 2016
Updated: October 2017.
You can also use classdef.
2In some platforms, you might not be able to savepath unless you run with heightened privileges. Matlab will throw an error/warning
message with further instructions.
1

https://www.mathworks.com/support/compilers.html

2 SEHYOUN AHN

2.1. Example. For example, consider f(z1,xs,73) = (22,23, 21 - 23) at point Ty = (2,6,4). The following code
will compute the derivative of f at &y, and set the variable A as the derivative matrix.

x=myAD([2;6;4]);
y=[x(1)"2;x(2)"3;x(1)*x(3)];
A=getderivs(y);

Automatic differentiation will handle more complex combination of operations, as long as only supported operations
are used. For example, since spdiags and matrix-vector multiplication are supported,

B=spdiags(y,1,3,3);
z=B*Xx;

C=getderivs(z);

will compute the derivative of BT respect to & at . Note that B is a matrix where values depend on z;’s.

2.2. Supported Functions. The list of supported operations are given in the following list. Since matlab has
a lot of functions, not all functions are implemented. If you need functions not yet supported, e-mail sehy-
oun.ahn@gmail.comﬂ

2.2.1. Algebraic Operations.
+ (plus)

- (minus)
.* (times)
.~ (power)
./ (rdivide)
.\ (ldivide)
abs

exp

log

sqgrt

2.2.2. Matriz Operations/Functions.

> (ctranspose)

* (mtimes)

\ (mldivide)

/ (mrdivide)

[A;B] (vertcat) where A and B are matrices
[A,B] (horzcat) where A and B are matrices

var = A(i:j,k:1) (subref) where A is a matrixﬁ
A(i:j,k:1) = var (subasgn) where A is a matrix
cumprod

cumsum

diff

length

max

min

repmat

reshape

size

sort

3Disclaimer: Obviously, not all functions can be implemented.
4end can be used for subsetting, e.g., A(2:end)

mailto:sehyoun.ahn@gmail.com
mailto:sehyoun.ahn@gmail.com

HOW TO USE AUTODIFF 3
spdiags

2.2.3. Trignometric Functions.
acos
asin
atan
cos
sin
tan
tanh

2.2.4. Logical Operations.

isnan

2.2.5. FEtc.
disp

end
fsolvdﬁ

3. NON-STANDARD SYNTAX

Some function calls require syntactic decisions since there is not a canonical way to do so for the function. There
is only one function (fsolve for multiple variables) that require an additional syntactic requirement, but this list of
functions might increase in the future. For any function not leasted here, calling the funcition for dual numbers
should be the same as that of the usual function call for real numbers[f]

3.1. fsolve. Given f(Z,7) : R"™™ = R™ with ¥ € R and i € R™. The function f(-) needs to have the first n-
dimension as the unknown values that fsolve will be solving for. This is not too restrictive as a new intermediate
function can be made with the variables reordered so that fsolve is solving for the first n variables. Given a
function with correct ordering, the syntax of calling fsolve is

fsolve(£,x0,y,...)

where £ is the function handle, x0 is the initial guess, and y is the given parameters/variables (with fsolve options
following y). This is more clear with an example. Suppose x1,z2 are defined implicitely by

2 2
L ri+x2+ 23+ 0 -0
f(xl;x27x37af) - < T +x1x2+a$3+sin(x3)) =0

and we want to find the derivatives of x1 and x with respect to variables z1, zo and z3, where 3 = 2122 + 23 and
a =z + 22 at a point Z = (1,2,3). One can call

z=myAD([1;2;3]);

f=0(x) [x(1) 2+x(2)+x(3)+x(4)"2;...

x (1) +x (1) *x(2) +x(3) *x (4) +sin(x(3))];

y = fsolve(f, [0;0], [z(1)*z(2)+z(3);z(1)+z(2)]1);
y_values = getvalues(y);

y_derivs = getderivs(y);

5Check technical notes below to see how to implement vector valued problems
6Implicit expansion has been implemented as of R2016b. Implicit expansion is not supported yet. Seehttps://github.com/sehyoun/
MATLABAutoDiff/issues/2

https://github.com/sehyoun/MATLABAutoDiff/issues/2
https://github.com/sehyoun/MATLABAutoDiff/issues/2

4 SEHYOUN AHN

Note that even if a is interpreted a parameter of the function (instead of a variable) in the problem, if it is a
dual-number, then the function f needs to be treated as a 4-dimensional function with a as a variable.

4. POINTS OF POTENTIAL SPEED GAIN

This code was optimized/tuned for our problem in mind. For example, it saves the derivative matrix as a sparse
matrix because our problem results in a very sparse derivative matrices. Instead of trying to guess and tune for
hypothetical case, I have included a list of points of potential speed gains.

(To be implemented in a ﬂeﬂ—lﬂ future) Scalar-matrix multiplication can be C accelerated.

(To be implemented in a rear future) I allocate an auxillary storage (of size <number of rows>) to do a

linear-time sorting in matdrivXvecval.c, but this can be changed. The new algorithm will behave better if

the resulting vector (from Ab) is sparse.

e If your problem results in a non-sparse derivative matrix, it will be more efficient to use full matrices instead
of sparse matrices. (You will not be able to use C acceleration provided with the package if you use full
representation.)

e Because I believe people do not use cumsum and cumprod that much, I just opted not to optimize this
code too much. They are included for completeness, but they can be further optimized. cumprod uses
double loops. It probably can be improved on (or at least written in C). Also, for the second dimension of
cumsum/cumprod I just transpose, cumsum in first dimension and then transpose back to get the result.

e b/A calls either ./ if A is a scalar, or (A’/b’)’ if A is a matrix. The latter does spurious transposes.
Therefore, if possible, the problem should be reformulated to avoid b/A when A is a matrix

e Concatenations are done through loops because the varargin object can contain both myAD and double array

objects. This can be made faster by making the matrices directly if possible instead of calling concatenation.

5. LICENSE

Copyright (c) 2016-2017, SeHyoun Ahn All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

This program is based on <Automatic Differentiation for Matlab> package by Martin Fink with license:

Copyright (c¢) 2006, Martin Fink All rights reserved.

"Future self here. Let’s never write something like this again.

HOW TO USE AUTODIFF 5

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTTAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGE.

With a few majors changes being:

e Derivative matrices are stored as sparse matrices instead of full matrices.

Matrices can be defined directly, and other sparse matrix operations, e.g., spdiags, are implemented.
Matrice multiplication and backslash are implemented.

fsolve is implemented.

C code is written for matrix-vector multiplication.

C code has been rewritten to use the sparse storage.

6. How AUTOMATIC DIFFERENTIATION WORKS
To be completedﬁ

SFuture self again: What did we agree on above?

	1. Initial Setup
	1.1. Compiling mex Files
	1.2. Adding Class Folder at Startup

	2. A Quick Tutorial
	2.1. Example
	2.2. Supported Functions

	3. Non-Standard Syntax
	3.1. fsolve

	4. Points of Potential Speed Gain
	5. License
	6. How Automatic Differentiation Works

